SMED

La finalité du SMED

Le SMED (single minute exchange of die), que l’on peut traduire par « changement de série en moins de 10 minutes » (donc en un temps en minutes correspondant à un seul digit) est une méthode de réduction des temps de changement de fabrication développée par S. Shingo dès les origines du TPS (Toyota Production System).

Pour les entreprises qui n’ont pas connu de révolution Lean, les tailles de lot correspondent aux quantités économiques calculées grâce à la formule de Wilson (issue du Fordisme). Ces tailles de lots importantes  conduisent à une surproduction et aux nombreux gaspillages que cela entraîne :

·       des stocks importants

o   immobilisant de la trésorerie et augmentant le besoin en fond de roulement (ROI en baisse),

o   engendrant des coûts (surfaces de stockage, inventaires, transport et déplacements inutiles, …),

o   rendant plus difficile leur gestion (plus il y a de pièces moins on trouve celle dont on a réellement besoin),

o   augmentant mécaniquement le temps de traversée de l’usine  en application de la loi de Little (WIP = LT x débit),

·       des problèmes qualité détectés tardivement et donc résolus tardivement après leur genèse,

·       des produits susceptibles de n’être jamais vendus aux clients (puisque non commandés au moment de leur production),

·       une flexibilité réduite vis-à-vis du client (en allongeant le Lead Time et donc la capacité de l’entreprise à s’adapter aux évolutions de la demande client).

 

Conscient de ces travers, Toyota a ainsi développé la technique SMED pour réduire les tailles de lot avec la finalité de fluidifier le flux de production.

Pour ce faire, il fallait trouver le moyen de réduire drastiquement les temps de changement de série qui contribuent directement au dimensionnement des tailles de lot.

 

Quantité économique = √ (2 x D x Ccs / Cp x Tps)

D = Débit de pièces par unité de temps

Ccs = Coût d’un changement de série

Cp = Coût d’une pièce

Tps = Taux de possession des stocks par unité de temps

 

Ainsi, l’application de la formule de Wilson indique qu’une réduction d’un facteur 2 du coût d’un changement de série permet de réduire d’un facteur √2 la taille de lot.

 

En visant un temps de changement de série idéal strictement inférieur à 10 minutes, S. Shingo avait l’objectif que pour une opération de production de 1h30 (90 minutes), le changement de fabrication représenterait ainsi 9 minutes ou moins (également appelée « règle du un pour dix » : les temps alloués au changement de série ne doivent pas dépasser 10% du temps de disponibilité des machines).

 

La mise en œuvre du SMED permet également de lisser la charge, en volume et mix produits, ce qui rend la production plus flexible aux évolutions de la demande client avec des niveaux de stocks intermédiaires de chaque référence plus faibles.

Par exemple, imaginons une usine ouverte 8h par jour et fabricant sur une seule machine 2 produits A et B avec un temps de cycle de 12s, une demande client de 500 unités de chaque produit et un temps de changement de série de 2h20.

L’organisation de la journée de travail est alors la suivante :

Smed1

Si le temps de changement de série était divisé par deux, la production pourrait être lissé de telle manière que dès la mi-journée la moitié de la production journalière des 2 produits pourrait être mise à disposition du client avec l’organisation suivante :

Smed2

 

Ainsi la finalité du SMED n’est pas de récupérer du temps improductif pour produire plus mais bien de fluidifier le flux de production en réduisant les tailles de lot et en nivelant la production en volume et mix produits. Il est, cependant, vrai que lorsque le SMED s’adresse à un goulot de production (voir théorie des contraintes), il pourra également être mis à profit pour gagner en capacité.

Voir l'ensemble des billets du Blog

L'effet "coup de fouet"

L'effet "coup de fouet" ou "Bullwhip effect" a été mis en évidence par le théoricien des systèmes J. Forrester en 1961. Celui-ci a démontré que de faibles variations de la demande se traduisent dans une organisation en flux poussé par des augmentations de stocks intermédiaires d'autant plus importantes que l'on remonte en amont dans la chaîne de prodcution.

Coup de fouet 1

Cette amplification s'explique par les tailles de lot et surtout le manque de dialogue entre les processus de production (ou encore les délais de traitement de l'information) qui prennent en compte, chacun à leur niveau, la variabilité de la demande du processus aval avec une marge de sécurité. L'évolution subie du besoin par chaque processus n'étant pas coordonnée, l'augmentation des stocks intermédiaires pour faire face à une éventuelle répétition de cette variation de la demande s'amplifie en remontant la chaîne de la valeur. 

Cela agit d'ailleurs sur la demande elle-même qui constatant un manque de réactivité de la production risque d'anticiper avec une marge de sécurité son besoin (effet Houlihan).

L'approche Lean et en particulier son pilier juste-à-temps permet de contrer l'effet coup de fouet par la mise en place :

  • d'un supermarché de produits finis qui agit comme un tampon capable d'absorber ces variations,
  • d'un flux tiré, qui instaure un dialogue entre les processus amont et aval, permettant de faire remonter la consommation réelle du client à toute la chaîne de la valeur,
  • d'un lissage de la production et d une réduction des tailles de lots, qui permettent de répondre avec une plus grande flexibilité aux évolution de la demande client (on produit de tout, tout le temps).

Voir l'ensemble des billets du BLOG

La VSM et la mise en place d'un flux au plus juste

La value stream mapping (VSM ou cartographie du flux de création de la valeur ajoutée) est l’outil fondamental qui sert de socle au déploiement d’une démarche Lean. C’est un outil visuel d’analyse qui permet de détailler :

  • les processus de création de la valeur, du point de vue du client, de la demande client à la livraison client,
  • les flux associés de matières et d’informations.

LA VSM sert à traquer les gaspillages en identifiant leurs causes ainsi qu’à bâtir le flux « cible » par l’élaboration d’une VSD (value stream design) et d’une feuille de route listant l’ensemble des actions (chantiers Kaizen) à mener, souvent sur plusieurs mois, pour mettre en place un flux au plus juste.

La méthodologie à appliquer est la suivante :

  1. Identifier la famille de produits faisant l’objet de la VSM, c’est-à-dire le groupe de produits soumis à un traitement semblable (mêmes processus de production ou postes de travail ou mêmes machines de production).
  • L’intérêt de travailler sur une famille de produit la plus large possible plutôt que sur chaque produit indépendamment est de conduire une analyse d’optimisation de la chaîne de la valeur la plus exhaustive possible (le risque sinon est d’améliorer la chaîne de la valeur pour un produit au détriment de tous les autres).
  • La méthode utilisée pour sélectionner les produits constituant une même famille est l’analyse en composantes principales de la matrice produits/processus parmi les produits ayant le plus grand impact sur les ventes (en valeur). Pour ce faire, une classification selon la méthode ABC pourra être utilisée si besoin.

Vsm1 4

2. Remonter le chemin de fabrication du produit à partir du client jusqu’au fournisseur :

  1. en identifiant (chronomètre à la main) pour chaque processus (ou poste de travail) mis en œuvre, les temps de cycle (TC), les délais d’exécution (DE) et les temps de traitement créant de la valeur-ajoutée (TVA). Pour ces derniers, une analyse de déroulement de chaque processus pourra être conduite.
  2. en identifiant les stocks (pour chaque produit de la famille étudiée) en entrée et sortie de chaque processus
  3. en faisant ressortir les liens entre les flux de matière et les flux d’information.

 

  • Les niveaux de stocks (pour l’ensemble des produits de la famille étudiée) sont transformés en temps de traversée en les multipliant par le Takt time (TT).

TT (Takt Time)  = temps requis sur une période / demande client moyenne sur cette même période

A noter que :

  • La demande client est moyennée sur une période suffisamment représentative. On peut éventuellement déterminer plusieurs Takt time si la demande est sujette à de fortes fluctuations saisonnières.
  • Le temps requis n'inclut pas les périodes d'inactivités organisées (temps de pause ou de repas). On ne s'intéresse pas ici aux temps "perdus" pour la maintenance, le règlage, les non-qualités et les temps de changement de série des équipements
  • On note que le TT double lorsque l'usine est organisée en 2 x 8 et triple en 3 x 8
  • Le takt time d'un poste amont peut être un multiple du TT d'un poste aval si celui-ci intègre dans sa production plusieurs exemplaires d'un composant produit par le poste amont

 

  • Les temps de processus pris en compte dans la ligne de temps sont les TVA et DE.
  • Pour les chaînes de valeurs composées de plusieurs chemins parallèles, le chemin le plus long sera utilisé pour déterminer les temps globaux (temps d’exécution et lead time).
  • Les données suivantes seront collectées au niveau de chaque processus :
    • Le nombre d’opérateurs dédiés au processus
    • Le temps requis, c'est à dire consacré à produire (temps d’ouverture – arrêts programmés)
    • Les TC et DE
    • Le temps de changement de série et le temps séparant deux changements de série (ou CPC – chaque partie [lot] chaque …)
    • Le TRS (taux de rendement synthétique traduisant le taux de disponibilité, de performance et de qualité de l’équipement)

Vsm3 5

  • Tracer le dessin de la VSM (les flux de matières, les flux d’informations et la ligne de temps) et calculer le ratio d’efficience :

     

  • % Efficience = temps de traitement total (somme des TVA des processus) / lead time (somme des délais d’exécution et des temps de traversée des stocks)

Au sein des organisations  qui n’ont pas adoptées le Lean ce rapport est souvent de quelques pourcents seulement. L’objectif de l’approche JAT est de l’améliorer sensiblement (voir Le Lean : quels résultats ?).

Vsm4 3

  1. Conduire une analyse juste-à-temps afin d’établir la chaîne de la valeur cible en respectant le principe suivant : « chaque processus ne produit que ce dont le processus suivant a besoin, au moment où il en a besoin » (cf. « Learning to see » de M. Rother et J. Shook).

La méthode d'analyse permettant de transformer la VSM en VSD se compose de 6 étapes :

  1. Déterminer le rythme de production répondant au client (takt time)
  2. Mettre en place un flux continu chaque fois que cela est possible
  3. Sinon, instaurer un flux tiré
  4. Piloter la production sur un seul processus, le pacemaker
  5. Lisser la charge
  6. Réduire la taille des lots 

 

  1. Tracer la VSD c’est-à-dire le dessin de l’état futur sur la base des choix réalisés en 3.

Pour établir la cartographie cible, le Lean Enterprise Institute (voir le livre Learning to see) préconise de répondre à 8 questions-guide, dont le lien avec les 6 étapes précédentes est présenté dans le tableau suivant :

Analyse de la vsm

 

Vsd final

  1. Etablir le plan d’actions permettant la mise en place de la VSD.

Vsm9 1

Voir l'ensemble des billets du Blog